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Executive summary 
• This project poses the question “how can we use observational data, statistical 

techniques and research methods to improve the current climatological record at Cass 
Basin?” 

 
• To this end, we have modelled a completed dataset of climate variables for the Cass 

basin to the present day to aid the Cass Management Research Area committee in 
research and ecological intervention in the basin. 

 
• To do this the physical characteristics and climate of the basin were researched as well 

as the potential uses, stakeholders, and imputation methods for the dataset. 
 

• Climate data from other stations in the vicinity of Cass was used to fill missing data in 
daily maximum and minimum temperature and weekly rainfall totals with a random 
forest machine learning imputation model.  

 
• Overall, imputation proved to be relatively accurate, with performance largely 

dependent on the availability of data from nearby station.  

• We hope that the methodological presented here might aid further research at Cass 
and may have applications in other places. 

• The datasets, code, and report have been made publicly available via GitHub and 
drop box.  
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1. Introduction 
Ground observations from weather stations remain the most reliable source of climatological 
data for any given area. The Cass Management Research Area committee wishes to have a 
complete climatological record for the Cass Basin area, so that recent trends and patterns can 
be used to inform projects such as the Cass native tree planting program as well as to aid 
future scientific research. There is limited research on how complex microclimates such as 
the Cass Basin are responding to a changing climate (Potter et al., 2013). However, the data 
sources that are currently available are filled with bad or missing data and only cover a few 
small periods in time. Understanding the long-term patterns in such an environment is 
essential to predict changes in physical processes and species distribution (Nowakowski et al., 
2018). This project aims to generate a complete dataset containing an accurate 
representation of the historic climate at Cass. To this end, we conducted extensive research 
to identify potential stakeholders, topographical influences on the microclimate, and 
statistical methods for modelling and filling missing data. This report will outline this research 
and the methods we found has used to clean, format and fill climate data. 

1.2 The study area 

The Cass mountain research area (CMRA) is twelve square kilometres of land owned by the 
University of Canterbury (UC), situated in the wide valley and surrounding slopes of the Cass 
Basin. The Cass Basin forms part of the mid-Waimakariri intermontane river basin in the 
central South Island. The wide valley was formed by tectonic uplift, of which has been eroded 
by periods of glaciation and intense fluvial action (Perry et al., 1999). The eastern Southern 
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Alps orographic rain shadow has shaped the vegetation of the basin, historically Mountain 
and Black beech, which was destroyed by anthropogenic land clearing fires, increasing soil 
fertility for agricultural purposes (Perry et al., 1999). This induced the now predominant cover 
of short tussock grassland (Young et al., 2016). The dynamic environment is continuously 
active due to processes such as gravitational soil creep, tectonic processes (Burrows, 1977) 
and fires (Perry et al., 1999). 

The Cass Basin has been home to at least two automatic weather stations (AWS): The Cass 
Station AWS is located at -43.03”S, 171.75”E at 572m a.s.l set up by UC in 1997, and the 
Chilton Valley AWS at -43.03”S, 171.76”E  and 648m a.s.l ran from 1986-2005 (figure 1). There 
is a horizontal distance of 804m and elevation difference of 176m between the two stations.  

1.3 Importance of climate data. 

“Climate change” typically refers to the global mean surface temperature changes over time 
(Wake, 2015). Although global trends play an important role, local and regional microclimate 
processes can drive additional variability at small scales. Complete long term records of 
climate data from complex environments can help understand how these unique 
environments respond to global climate change. Academic literature has highlighted the 
importance of climate data as a foundation for many decisions, analyses, and tools (Pohl et 
al., 2022). The accuracy and accessibility of climate data is crucial due to the increasing 
number of people accessing the data and it being used for “billion-dollar decisions” (Overpeck 
et al., 2011). 

1.4 Project stakeholders 

Other than our primary stakeholder, the CMRA committee, the groups that have been 
identified as having interest in the project's findings include mana whenua, future research 
groups, farmers, recreationalists, and fire and emergency. The CMRA committee initiated this 
project as part of their wider goal to investigate the long-term variation in the microclimate 
Cass and are expected to utilise and expand this dataset for future research. The results have 
potential to contribute to projects such as the Cass native tree planting program run by 
Associate Professor David Evison.  
 
An important aspect in conducting research in New Zealand is engaging with Māori; the 
original kaitiaki or custodians of the land (Rauika Māngai, 2020). The guidelines for 
engagement with Māori (N.d) state that one can build a relationship of trust and confidence 
by establishing contact early in the process of engagement whilst keeping an open mind. 
Following this advice, we met with Dr Abby Suszko to investigate a relationship between 
CMRA and Māori, we learnt that the relationship is in its infancy, therefore we will engage 
through a UC contact. He Rautaki mō te Huringa Āhuarangi climate change strategy (2018) 
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states that understanding upcoming changes is essential when making good decisions for 
future proofing the environments that provide for Ngāi Tahu’s rangatahi. Temperature and 
rainfall readings are of particular interest, relevant to the climate change strategy, with food 
security and natural hazards being of primary concern regarding hauora. 

1.5.1 Data sources 

There are several weather stations that have been operated or are operating near to Cass. 
Few of these stations have a complete long-term record of data, with many gaps due to sensor 
malfunction, lack of maintenance, or other issues. Weather station datasets were collected 
from a range of sources including, the community partners’ private collection at the university 
(for Cass and Chilton), NIWA’s national database (Cliflo), and from Environment Canterbury’s 
archives (by request). Stations recording precipitation and temperature are shown below in 
figure 2a and 2b respectively.  

 
We established a connection with Eva Nielson from UC, who has suggested that we could use 
small resolution European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis 
data as a data source, or to validate results. While this option has not been explored in this 
paper due to time constraints, assimilation of ERA5 data into a model might be useful in a 
future iteration of this project. 

1.5.2 The Problem of Bogus Data 

The accuracy of climate data is important to establish accurate trends in climate processes. 
Unfortunately, both Cass and Chilton are full of spurious data due to sensor malfunction and 
other issues. Using this data without careful examination can lead to completely inaccurate 
research conclusions, for instance Figure 3a) shows the polar temperature and wind plot for 
1993 at Chilton station, compared to figure 3b) which displays the more accurate 
representation of the climate using the 1995 dataset. An unknown issue with the data 
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recorded between 1991-3 meant that temperature values below 0 were recorded as positive 
instead of negative, thus displaying the cold southerly winds as positive temperatures. The 
removal of such data will be essential to ensure the accuracy of our completed results. 

 

1.6 Non-linearity between stations 

A wide range of literature has highlighted that topographic features and vegetation cover 
drive microclimatic variations and unique local atmospheric processes of an area (Qing-Ling 
et al., 2015). These microclimate processes can vary significantly across even small distances 
in Arthurs Pass.  
  
The microclimates of New Zealand’s alpine environments are a complex combination of 
boundary layer stability and energy flow characteristics (Sturman et al., 1985). Radiative 
energy exchange (REE) between the atmosphere and earth’s surface drives local climate 
processes. The Surface Radiation Balance (SRB) refers to the incoming shortwave and 
outgoing longwave radiation fluxes at the surface (Suttles et al., 1986). Variations in the SRB 
are a function of the surface albedo, aspect, and inclination of the local slopes and 
interference from surrounding topography (Whiteman et al., 1989). Slope and valley winds 
are generated when the earth’s surface heats and cools on an angle generating horizontal 
pressure gradients (Whiteman, 1990). These generate a range of localised weather processes 
such as cold air valley pooling, slope and valley winds (Whiteman et al., 1993), resulting in a 
highly variable and complex climate.  
 

1.6.1 Wind channelling 

The dominant wind direction and speed at Cass and Chilton are significantly different, even 
though they are situated only 800m apart (figure 4). The surrounding topography shelters the 
Chilton AWS significantly reducing wind speeds. However, Cass Station is exposed to the 
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predominant wind funnelling down the valley from the northwest, experiencing much faster 
wind speeds of up to 30ms-1 compared to the peaks of 6ms-1 of Chilton station.  

The prominent wind flowing through the valley is warm from the northwest and cool from 
the southeast (figure 5). This reflects the typical synoptic weather patterns of the southern 
hemisphere’s midlatitudes. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Polar plot displaying the wind speed, temperature and direction at Cass Station from 
1997-2022. 

Figure 4: Windrose displaying the wind speed and direction at Cass and Chilton AWS. Figure 
generated in R studio. 
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1.6.2 Valley pooling 

Valley pooling occurs within the Cass Basin due to stable temperature inversions forming as 
cool air sinks to the valley floor overnight (Lundquist et al., 2008).  This can be seen be the 
cool downslope slow northerly wintertime winds seen in Figure 5. The effect of this is that the 
cold air pooling makes temperature readings on the valley floor significantly lower than 
stations at slightly high altitudes, above the inversion that has been formed. This process can 
generate complex non-linear relationships between temperature readings at nearby stations 
located at different heights, such as Cass and Chilton. 

1.6.3 Shading effect 

The mountainous topography northeast of Cass Basin influences incoming solar radiation at 
Cass and Chilton uniquely. The low angle of the sun in conjunction with the peaks northeast 
influences differential shading, whereby Cass station remains in the sun longer than Chilton 
(figure 6 and 7). 

 
 
 

 

 
 
 
 
 

 
 

Figure seven: Topographic shading experienced at Cass and Chilton weather stations  

Figure 6: General solar radiation at a broad-spectrum wavelength (Li200) at Cass and Chilton 
stations. 

Figure 7: Topographical shading at Cass and Chilton weather stations in the winter. Source: 
Google Earth  
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1.6.4 Adiabatic lapse rate 

The maximum and minimum temperatures at each station would be expected to follow 
similar fluctuations of seasonal temperature, only at different magnitudes. The adiabatic 
lapse rate of 9.8oC per 1000m decreases the temperature at weather stations situated in 
higher elevations, as they are subject to more cooling with altitude (Blandford et al., 2008).  
 

1.6.5 Synoptic setting 

Thermally generated local climate features such as slope, valley winds and cold air pooling 
only occur in the Cass Basin when stronger synoptic scale winds are not present (Greenland, 
1977). The Southern Alps synoptic setting is characterised by the interaction between the 
polar westerlies to the south, and the subtropical zone in the north (Greenland, 1977). This 
gives rise to a cycle of high-pressure systems and associated calm conditions being displaced 
by low pressure westerly flow on an average of every six to ten days (Soons, 1968). The 
predominant wind at Cass Basin is from the northwest, (McGowan & Sturman, 1996), 
occurring when the humid air of the Tasman Sea overtops the Alps dropping it’s moisture 
content leaving warmer, drier airflow in the lee (Elvidge & Renfrew, 2016; Soons, 1968).  

1.7 Selection of Imputation Scheme 

Imputation is the filling of gaps using a statistical model to estimate missing values. There is a 
hierarchy of methods used in data imputation, ranging from very simple methods like single-
value replacement of missing values, to very complex methods involving machine learning 
techniques. Given the suggested use-cases of our data, a model-based method will be 
necessary to ensure the accuracy of the datasets. There are many potential regression models 
that can be used, however the non-linearity between weather stations and high rates of 
missingness mean that some methods, such as linear regressions, will prove substandard. This 
is because linear regression assumes homoscedasticity (Tranmer & Elliot, 2008), of which the 
error of rainfall changes significantly across independent values.  
  
Our data also has a high degree of missingness and very little or no overlap between some 
stations. There are also likely to be some amounts of outliers due to sensor failures. This is 
particularly true for rain gauge measurements, which are prone to blockages by debris or 
even becoming homes for arachnids, as was noted by the staff responsible for Chilton in 2002: 

 
The missingness of the datasets can be overcome by using an iterative imputation process 
wherein data is imputed in a round-robin fashion, with imputed missing values used to build 
and improve the models used by the next round of imputation. This process encompasses a 
broad range of techniques that fall under the umbrella of Multiple Imputation. There are 
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several methods highlighted by academic literature, but two papers provide important insight 
to our project. Aguilera and colleagues (2020) compare various imputation techniques on rain 
gauge data with a high rate of missingness, sometimes in excess of 90%. They note the success 
of two techniques, spatio-temporal kriging and an implementation of Brieman’s (2001) 
Random Forest regressors in a sequential imputation scheme. A second paper by 
Wolfensberger (et al., 2021) corroborates the success of The Random Forest algorithm for 
precipitation data over Switzerland, a similarly mountainous area like Arthurs Pass. Random 
Forest imputation has also been successfully employed in the imputation of temperature data 
by Zhang et al. (2022). 
  
Random Forests (hereafter RF) is an ensemble learning methodology where a number of weak 
learners are fit to bootstrapped samples of the dataset who then vote on the best estimate 
of a missing variable. In the case of RF, the ensemble of weak learners is a collection of binary 
decision trees trained on different samples of the dataset. Missing values produced from one 
round of training and voting are used to train the next ensemble of learners in the successive 
iteration. This process is discussed in detail by Stekhoven & Bühlmann (2012) who successfully 
employed it in their MissForest algorithm used in this paper. The principal advantage of RF is 
that it is inherently non-parametric, meaning no assumptions about distributions or 
correlations between the datasets are made. It can also impute categorical datasets as well 
and it has relatively straightforward to tune hyperparameters, unlike some other machine 
learning techniques. Preliminary testing showed that it outperformed many other common 
imputation techniques including KNN neighbours (Mucherino et al., 2009) and parametric 
multiple linear regression (Azur et al., 2011). 

2. Methods 
2.1 Data formatting and storage  

Due to the myriad of data sources and standards, the raw datasets needed reformatting to 
make them easily usable for analysis. Furthermore, previous stewards of the Cass and Chilton 
datasets have used inconsistent file formatting and file storage solutions. Variable names 
would change from one year to the next, and datasets were stored in everything from 
Microsoft Access 97 .mdb files, to Excel .xls spreadsheets and .csv text file with no column 
headings. The datasets were first reformatted to an internally consistent standard, with 
identical variable names (see appendix C). They were then all saved as comma delimited .csv 
files to ensure that they are easily accessible by a wide range of software and are robust to 
future changes in technology. 

2.2 Data cleaning 
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A masking process was applied to remove physically impossible or highly unlikely values, such 
as wind directions of more than 360 degrees or soil temperatures greater than 45oC. 
However, as seen on figure 8a), some bogus data could not be removed with this method, as 
the spurious values still fell within a physically plausible range. Instead, filtered datasets were 
manually inspected to remove such unrealistic discontinuities. 

 

 

2.3 Imputation Model: Rain 
Rainfall data was collected from several weather stations around the study area. Some 
datasets were excluded if they were extremely incomplete and closely located to a more 
complete station or contained large quantities of spurious data. Unfortunately, the Chilton 
rainfall dataset contained many potential errors and discontinuities in its dataset, so was 
excluded. Three rain gauges in Arthur's Pass village are available, however only the ECan rain 
gauge provides a full record from 1955 to present, thus only it was selected for use within the 
model. The Rainfall records for the two rain gauges located at Cass Station were combined. A 
map (figure 9a) and the continuity of the datasets used in the rainfall model (figure 9b) are 
shown below. 

 
 

Figure 8:  Raw and cleaned soil temperature data for Chilton station at different periods 
through the cleaning process. Figures generated in R Studio. 
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A major problem presented by the datasets is that some rainfall gauges record daily rain at 
0000hrs and others at 0900 or 0800 hours. This causes anywhere from 16 to 18 out of 48 total 
hours of recorded rainfall difference between two stations recording at these different times. 
These differences between daily rainfall totals cannot be easily corrected. Instead of daily 
rainfall, weekly rainfall totals were used, as this reduced amount of time difference between 
any two stations to only 18 of 336 total hours. 
  
One issue with RF imputation of rainfall data is that the voting scheme makes it sometimes 
difficult for the imputer to reproduce weeks where there are no rainfall. To remedy this, a 
binary dummy variable was imputed alongside the rainfall date with 0 corresponding to a no-
rain observation. This is then multiplied with the corresponding rainfall column thus setting 
any weeks that the model predicted had no rain are set to 0. 

2.4 Imputation Model: Temperature 

Temperature data is scarcer than rainfall due to the low number of weather stations in 
Arthur's Pass that record daily temperatures. Most weather stations, especially older stations, 
do not record daily mean temperatures, so only maximum and minimum temperatures were 
imputed. The locations and dataset spans are shown in figure 10 below. In the end, six stations 
were used: Arthurs Pass, Arthurs Pass EWS, Broken River, Craigieburn Forest, Chilton, and 
Cass. Because of its proximity and the limited span Arthurs Pass EWS, it was used to fill a few 
small gaps in Arthurs Pass in an initial ‘pre-imputation’ phase and then dropped from the 
dataset to reduce overall missingness and redundancy.  

 

3. Results 
3.1 Evaluating Imputations 
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The Datasets were split into testing and training portions for evaluation, this was achieved 
using two methods. The first method samples a fixed number of random “testing” from each 
variable across the span of the dataset. To avoid introducing spurious model uncertainty, the 
imputation algorithm was run multiple times using different sets of testing samples. In each 
case, 1000 total samples were taken with no individual dataset losing more than 0.5% of total 
data to the testing sample. This necessitated no less than 30 individual imputations for the 
rain data. This is advantageous because it accounts for the imputation accuracy of all variables 
across the entire dataset, however it less suitable for qualitatively evaluating the actual 
behaviour of an imputation. The second simulates a station blackout by removing all records 
from only one weather station over a time period. For hyperparameter optimization, random 
sample validation of all variables was used whereas simulated blackout validation was used 
to visually check the model and examine how imputation accuracy changed over time. 
  
Models were evaluated according to R2 scores, Mean Square Error (MSE), Mean Absolute 
Error (MAE), and Mean Bias (MB). R2 records the proportion of variance in the test data that 
can be explained by variance in the predicted data. MSE and MAE are two measurements of 
the mean error across the dataset, MAE is the average magnitude of error whereas MSE is a 
measurement more sensitive to extreme outliers. MB is another average error measurement, 
but it considers the sign of the error, MB measures whether the model is consistently under 
or over predicting values and indicates whether lower resolution samples of the data, like 
annual or seasonal means, are likely to systematically overestimate or underestimate the true 
value of the data. 

3.2 Rainfall 

The hyperparameters were tuned by trial and error, it was found that a model utilising the 
following parameters yielded good results:  
 

 
 
 
 
 
 
 
 
 
 
 

Table 1: Optimised hyperparameters for the forest regressor of the rain model 
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Using these parameters, the model produced satisfactory cross-validation scores as shown in 
figure 11 below. 
 

 

 
Except for a few stations, error scores are generally low, however, high MSE error indicates 
that the model may be producing a number of outliers for some variables. The worst-
performing stations are generally those found toward the edges of the dataset, which is likely 
to be due to the lower number of surrounding datasets those cadraw from. Comparing several 
test datasets from Cass it was found that imputation accuracy decreases in the older records. 
This is likely a result of the lack of closely located stations operating in the early dataset, unlike 
later on where the Grasmere rain gauge provides a very closely correlated dataset to the Cass 
station. However, it can be seen from Figure 12 a) below that the imputation still maintains a 
reasonably plausible record even in the older dataset with a nearly perfect record being 
produced post 1986 when Grasmere is in operation.  

 
 

Figure 11: Evaluation of impution performance for rainfall data from ~1000 random samples 
taken from 30 imputations. 

Figure 12: a). imputed data filling a simulated station blackout for older data (1972) and b). 
imputed data filling a station blackout for 2001, after Grasmere station was in operation.  
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3.4 Temperature 

Hyperparameters for the temperature model were tuned using trial and error. The following 
hyperparameters (Table 2) were found to produce good results:  

 
Virtually all stations are imputed with relatively high correlation scores and low mean errors 
which indicate that the imputation is producing a satisfactory model in most cases (figure 13). 
The worst performance is found at the Chilton station and for minimum temperatures at Cass. 
The high MSE scores indicates that some outliers may be contributing to the inaccuracy of the 
imputation here, perhaps as the result of difficult-to-model local microclimatic effects. In any 
case, errors are still small and mean biases close to zero indicate that results are not 
systematically skewed, and therefore should produce reliable results at lower temporal 
resolutions. 

  

Table 2: Optimised hyperparameters for the forest regressor of the temperature model. 

Figure 13: Evaluation of imputation performance for temperature data from ~1000 random 
samples taken from 30 imputations. 
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Two simulated station blackouts were introduced into the dataset, one in 1999 when the 
nearby Chilton temperature data is available (figure 14a) and in 2010 with no nearby stations 
(figure 14b). The timeseries shows an extremely plausible fit generated by the model in both 
cases.   

 

 

3.5 Climate at Cass 
Our dataset shows that the climate at Cass is typically warmer and drier than most of the 
other weather stations in the study area. Cass experiences substantially hotter mean 
maximum temperatures than any other station. Similarly, it also has the second highest mean 
daily maximum temperatures, second only to Chilton valley and similar to Arthurs Pass. High 
maximum temperatures might be explained by its relatively low altitude and exposure to 
sunlight year-round. Interestingly, Chilton does not appear to get as cold as Cass however, 
which might be due to the valley fog effect (1.6.2) and might explain Cass’ overall similarity 
to Arthurs Pass, which is also located at the bottom of a valley.  

Figure 14: a). Simulated station blackout for 1999 with nearby Chilton data and b). Station 
blackout for 2010 with no available nearby stations. 
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Similarly to the temperature plot of figure 15 there is spatial variation in the volume of 
precipitation recordings (figure 16). It is clear that the higher precipitation recordings are from 
the weather stations that are located furthest west, thus experiencing more intense 
precipitation, compared to the eastern stations sheltered by the orographic rain shadow. 

 

 

Figure 15: Imputed annual mean maximum and minimum temperatures. 
  

Figure 16: Total annual imputed rainfall for all stations. Note the dramatic difference 
between west-coast and east-coast stations.  
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4. Discussion 

4.1 model success  

Overall, both imputations for rainfall and Temperature appear to be satisfactory. These 
should not be treated as a perfect record; however, they are likely to be a good representation 
of the annual variability and an approximate account of weather at the stations. The most 
accurate Cass rainfall measurements will be those from 1986 onwards, with rainfall in this 
period being almost perfectly accounted for by the nearby rain gauge at Grasmere. The 
accuracy of Cass temperature estimates will be broadly similar across the dataset, although 
will probably be best represented from 1978 as due to the availability of Arthurs Pass 
temperature records, another station similarly located at the bottom of a valley and likely to 
experience similar micro-climates. Although this was a imputation mainly aimed at providing 
estimates for the climate at Cass, all datasets have been imputated. The accuracy of most 
these imputations are comparable to Cass, however caution is advised when using rainfall 
estimates from stations near the edge of the study area.  
 
Together, the imputed datasets provide a fair accurate account of the general climate not 
only at Cass, but across the study area. Inter-annual trends are preserved across the dataset, 
and some climatic changes can be observed. For example, OLS regressing was used to fit a 
linear model for annual mean minimum and maximum temperature to Cass Station 
temperatures from 1965 to 2021 (table 4). We see a statistically significant positive trend in 
mean annual maximum temperatures of 0.0122oC per year. This is in the order of the 
expected rate of change due to global warming, and it is interesting to note that this trend 
appears to be much weaker for minimum temperatures.  

 

4.2 Limitations 

Although Random Forests makes no assumptions about the distribution or relationships 
between weather stations, it does make several important assumptions about the dataset 
itself. Because random forests are binary decision tress fitted to known observations, a key 
assumption they make is that the data provided is an accurate representation of the entire 
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dataset. In other words, it cannot extrapolate data into ranges that it has not seen before. 
This is potentially problematic if the range of a variable changes significantly over time. For 
example, since Cass data is only available from 1997, our imputation backwards until 1965 
may be inaccurate due to the warming temperatures potentially allowing colder minimum 
temperatures in this period than were observed from 1997 onwards. Although limited 
evidence was found to suggest that this has affected our dataset, as Cass temperature trends 
closely follow trends observed at other stations with data in this time period, it remains an 
important limitation to consider when using very old, imputed data. Similarly, while the 
MissForest algorithm is resilient to large gaps found in our dataset (Zhu et al., 2022), large 
missingness will always introduce uncertainty in an imputation. 
 
Finally, while we have done our best to ensure that the data used in the model was free of 
spurious data, it is possible that some bad readings slipped though. This is especially true for 
rainfall data that produces hard-to-catch errors (readings of 0mm) rather than clearly bogus 
data. Although the wisdom-of-the-crowd voting scheme and random bootstrap sampling of 
MissForest does make the algorithm much more resilient to outliers, they can still affect the 
stability and accuracy of the imputation. 
 

5. Conclusion 
In this report, we have used statistical and machine learning methods to create accurate 
estimates of missing weather station data at Cass station and surrounding areas in Arthurs 
Pass, New Zealand. We found that a Random Forest based imputation method (MissForest) 
(Stekhoven & Bühlmann, 2012) provided reliable and accurate results for both rain fall and 
temperature measurements. Using this method, we believe that we have significantly 
extended the range of reliable climate data for Cass basin and surrounding stations. This 
dataset, this report, and the open-source python code used in its production will be provided 
in a GitHub repository for whoever wishes to use it (see appendix A) . 

Our hope is that this work will enable others to further study the climatological processes at 
Cass basin, to understand how they may be changing over time, and to inform decisions made 
by, landowners, Mana Whenua, policy makers and other stakeholders in the area. In future, 
the imputed datasets could be further extended to include more climate variables, with soil 
temperatures, solar readings, windspeeds, and humidity being obvious candidates. The 
results of this project has already been met with enthusiasm from potential stakeholders, 
including Mana Whenua, which is a clear indication of the need for such datasets. We believe 
the methodology pioneered in this project might also be used in other areas with similarly 
scant meteorological records.  

Overall, this report highlights on the unique environment of Cass and Arthurs Pass, and all the 
challenges posed therein. We can see dramatic spatial variation across the pass and complex 
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weather patterns as a result of the mountainous landscape. We believe that our work will 
help connect people the processes that make this area so special and will guide the protection 
of this fragile ecosystem into the future. 
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Appendix A 
https://github.com/CaJaDav/Cass-Weather-Station-
Imputation?fbclid=IwAR3MQRGhYTrkso_1Rbs2hEU01jBIlUK6Ax5NKRu3zuWn86Cd24-
JyhcNXqc 
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Appendix B 
R Studio code for figures 
 
#set the working directory 
setwd("~/309 project") 
#import and read in dataset 
Cass_Hourly <- read_csv("~/309 project /Cass_Hourly.csv") 
Chilton_Hourly <- read_csv("~/309 project /Chilton_Hourly.csv") 
Cass_Daily <- read_csv("~/309 project /Cass_Daily.csv") 
Chilton_Daily <- read_csv("~/309 project /Chilton_Daily.csv") 
 
 
#import openair package 
library(openair) 
 
 
# index by timestamp instead of number  
Chilton_Hourly$date <- as.POSIXct( Chilton_Hourly$date, format="%d-%m-%Y%H:%M" ) 
 
 
#change the colum name time to date 
colnames(Chilton_2006_clean)[1]='date' 
 
print( TestData$Time ) 
print( class(TestData$Time) ) 
 
#windrose 
windRose(Chilton_Hourly, type = "season", wd="Wind_Dir", ws = "Wind_Speed", 
         breaks=c(0,2,4,6,8), 
         key= list(labels =c(">0-2", 
                             ">2-4", 
                             ">4-6"), 
                   hemisphere = "southern")) 
 
windRose(CassHourly, type = "season", layout = c(4, 2)) 
 
#polarannlus plot  
polarAnnulus(CassHourly, wd="Wind_Dir", ws="Wind_Speed", pollutant = "Air_Temp") 
 
#polar plot 
polarPlot( 
  Cass_Hourly, 
  pollutant = "Air_Temp", 
  x = "Wind_Speed", 
  wd = "Wind_Dir", 
  hemisphere = "southern", 
  title="Chilton 1993") 
 
#plot difference between the incoming solar radiation at Cass and Chilton 
plot(Cass_1999_Hourly$Li200) 
plot(Chilton_1999_Cleaned_SJ$Li200) 
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#calendar plot 
calendarPlot(Cass_2006_raw, pollutant = "Air_Temp") 
calendarPlot(Cass_Hourly, pollutant = "Cass_Hourly$Air_Temp", annotate = "Cass_Hourly$Wind_Speed") 
calendarPlot(CassHourly, year = "1999", pollutant = "Wind_Speed", 
             breaks = c(0, 5, 10, 15,20)) 
  
#compare plots of cleaned and uncleaned data            
plot(Chilton_1993_filtered$Air_Temp) 
plot(Chilton_1993_clean$Air_Temp) 
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Appendix C 
 
This is a complete database for all the resources I have collected from NIWA, ECan and the 
University weather stations. 
 
------------------------------------------------- DESCRIPTION OF DIRECTORIES --------------------------------
------------ 
- Raw_Data: 
 
 This contains the 'raw' files in their (mostly) original formatting. These have been 
minimally altered by myself  
and are not all that usable, i.e. different headers, formatting, timestamps, etc.  
 
- Formatted_Data: 
  
 This contains the raw data in a consistent format. The Timesteps are regular, 
variables are consistent. Each  
station has its own folder. Data is stored in .csv files by year.  
 
- Filtered_Data: 
  
 This is a directory containing data that filtered to remove 'obviously bad' data, i.e. 
values outside of a  
physically feasible range.  
 
- Cleaned_Data: 
  
 This is a special directory contained data that has been curated by hand to remove 
obviously spurious, but hard 
to contain data.  
 
- SUGGESTED USE: 
 
Generally, the formatted datasets can be used for most of the data provided by NIWA or 
ECan. Filtered datasets, or cleaned 
datasets are strongly recommended for Chilton and Cass due to the high amount of bad 
data. 
 
------------------------------------ COLUMN DICTIONARIES AND FORMATTING NOTEBOOKS----------
------------------------------- 
 
Much of the formatting of the datasets have been accomplished withing the Jupyter 
notebooks attached. In broad strokes,  
these contain the python scripts used to create the Cleaned, Filtered, and Formatted 
datasets from Raw_Data. Because these 
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scripts are bespoke for each differently formatted datasource, I felt it would largely be a 
wasted effort to turn these in 
to a complete library or executable.  
 
The Daily_Column_Dictionary and Hourly_Column_Dictionary files contain a lookup table of 
all the known variable names  
across the raw datasets used. The top row are the names used in the rest of the dataset. A 
full breakdown of variables can  
be found below. 
 
Changing the vairable names is as simple as editing the .csv and running the Notebooks 
again.  
 
 
 
***************************************************************************
********************************************** 
--------------------------------------------- DAILY VARIABLE NAMES --------------------------------------------
---------- 
***************************************************************************
********************************************** 
 
Output_Code   
Year    
Day ---------------------------- These are largely unused, just a product of the datalogger at Cass 
and Chilton 
 
Time --------------------------- Time in 'YYYY-mm-dd' formatting 
 
Li190     
Li190_Max   
Li190_Max_Time   
Li200    
Li200_Max    
Li200_Max_Time ----------------- Li190 and Li200 are solar sensors for photolysis-active and 
total radiance respectively. 
 
Air_Temp    
Air_Temp_Min    
Air_Temp_Min_Time   
Air_Temp_Max    
Air_Temp_Max_Time -------------- Mean, min and max air temperature readings 
 
5m_Air_Temp    
12m_Air_Temp ------------------- Air temperature at different heights (Chilton) 
 
Soil_Temp    
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Soil_Temp_Min    
Soil_Temp_Min_Time   
Soil_Temp_Max    
Soil_Temp_Max_Time ------------- Soil Temperatures (unspecified depth) 
 
10cm_Soil_Temp 
20cm_Soil_Temp 
50cm_Soil_Temp 
10cm_Soil_Temp_Min 
10cm_Soil_Temp_Min_Time 
20cm_Soil_Temp_Min 
20cm_Soil_Temp_Min_Time 
50cm_Soil_Temp_Min 
50cm_Soil_Temp_Min_Time 
10cm_Soil_Temp_Max 
10cm_Soil_Temp_Max_Time 
20cm_Soil_Temp_Max 
20cm_Soil_Temp_Max_Time 
50cm_Soil_Temp_Max 
50cm_Soil_Temp_Max_Time -------- Soil Temperatures at specified depth 
 
Ground_Temp 
Ground_Temp_Min 
Ground_Temp_Min_Time 
Ground_Temp_Max 
Ground_Temp_Max_Time ----------- Surface Temperatures  
 
Rel_Humidity 
Rel_Humidity_Min 
Rel_Humidity_Min_Time 
Rel_Humidity_Max 
Rel_Humidity_Max_Time ---------- Relative Humidity (%) 
 
10cm_Soil_Moisture 
20cm_Soil_Moisture 
50cm_Soil_Moisture 
10cm_Soil_Moisture_Min 
10cm_Soil_Moisture_Min_Time 
20cm_Soil_Moisture_Min 
20cm_Soil_Moisture_Min_Time 
50cm_Soil_Moisture_Min 
50cm_Soil_Moisture_Min_Time  
10cm_Soil_Moisture_Max 
10cm_Soil_Moisture_Max_Time 
20cm_Soil_Moisture_Max 
20cm_Soil_Moisture_Max_Time 
50cm_Soil_Moisture_Max 
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50cm_Soil_Moisture_Max_Time --- Soil Moisture Readings 
 
Wind_Speed 


